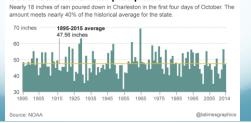
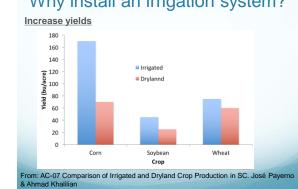


Key considerations of an irrigation system


- · Why install an irrigation system?
- Costs
- Water supply options
 - Water guality
 - Water treatment
- Water quantity
 - Irrigation scheduling options
 - When
 - How much
 - Water delivery systems
- Informational resources

Why install an irrigation system?


Reduce risk associated with climate variability

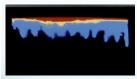
- · Short term, but more frequent intense events Drought
 - Floods

South Carolina annual precipitation

Why install an irrigation system?

Why install an irrigation system?

Increase net return


Table 2. Average increase in yield and economic return from irrigation over dryland obtained by a farmer in South Carolina during a five-year period (2009 to 2013).

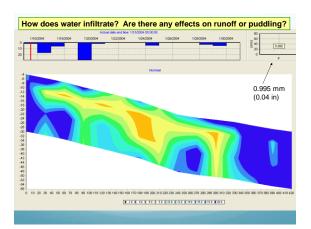
Wheat	Corn	Soybeans	
Yield increase (%) 23%	100%	74%	
Crop Price (\$/bu) \$7.00	\$5.00	\$11.50	
Income increase (\$/ac)		\$230.00	
\$24,502-07 Comparison of Irrigated	and Dryland Crop \$175.00	Production in SC. José \$95.00	

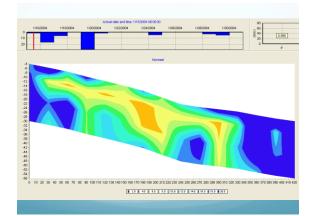
Why install an irrigation system?

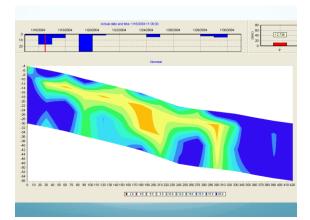
Reduce risk associated with soil variability

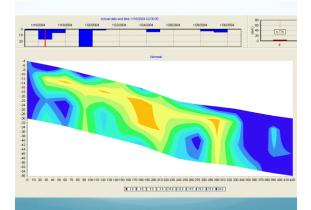
- Soil water repellency
- Soil textural changes

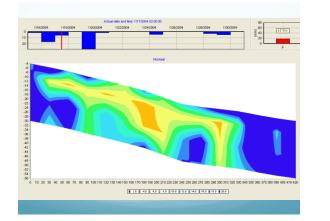
Matrix Flow - GOOD

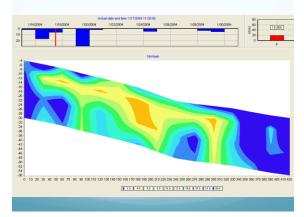

Finger Flow - BAD

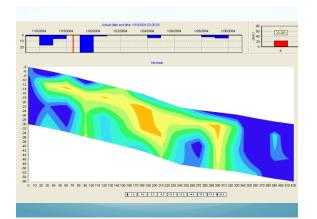

Why install an irrigation system?

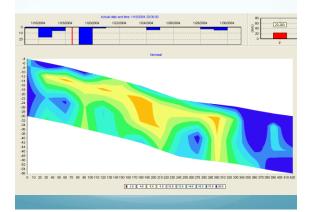

Reduce risk associated with soil variability

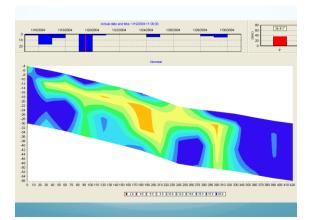

Soil water repellency

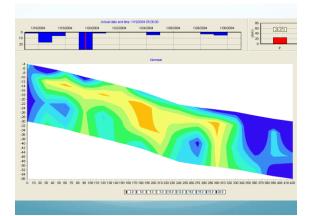


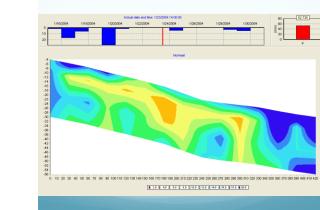


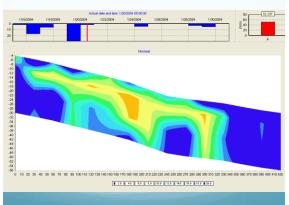


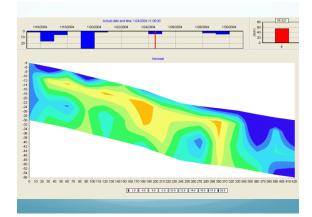


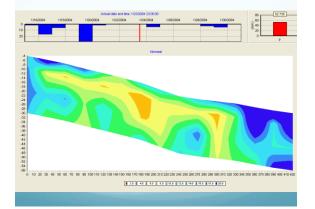


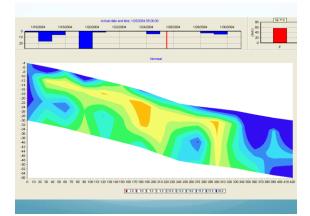


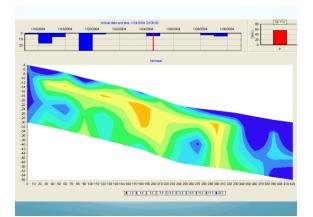


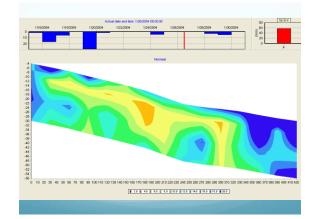


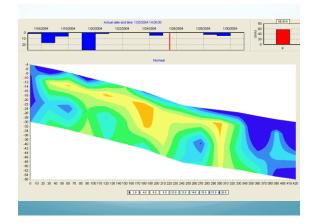


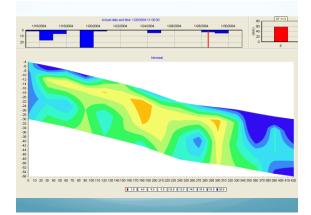


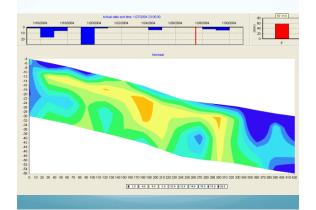


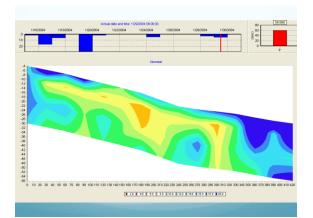


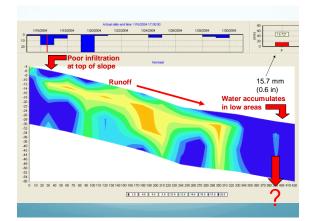


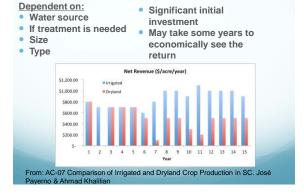












Costs of an irrigation system?

Water Supply Options?

Sources:

- Wells (Deep, Shallow)
- Storm water ponds
- Municipal •
- Surface water (creeks, rivers, lakes, AIW)
- Treated wastewater

Water Supply Options?

IRRIGATION WATER

Always test water sources:

- Private contract labs
- Clemson Agricultural Services Lab

Quality also

influences: Water quantity

- - Pesticide efficacy

ke to check the plant nutrient content of their water or pinpoint a specific may be causing a toxicity problem due to excessive levels can also benefit ion water analysis. This service is not intended for assessing water for dri ios. We cannot accept international samples for analysis.

Analyses Available	Cost/Sample	
	In State	Out-of-State
Standard ¹	\$6	\$12
Special ²	\$25	\$50
Heavy Metals ³	\$15	\$30
Fax Report	\$1	\$1
Mailed Paper Report	\$1	\$1

Water Supply Options?

Sources will determine water quality:

- Common issues are:
 - Bicarbonates
 - Salinity
 - Sodium
 - Pure water • pH
 - Iron
- Can influence plant growth directly,
- Through promoting poor soil structure,
- Impacting irrigation system performance.

Water Supply Options?

Irrigation Application

Irrigation efficiency: proportion of the water that is beneficially used to the irrigation water applied.

Distribution uniformity: the evenness or uniformity or irrigation water applied over an area

Factors Influencing IE

- pressure

- piping system

- maintenance

- Sprinkler system:
- nozzle performance
- head spacing
- installation
- Soil conditions
- Environmental conditions (Wind Drift)

Wind Speed (mph)	% Lost to Evaporation
15	18
20	30
40	93


Water Quantity

Irrigation Scheduling Options

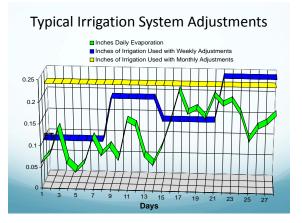
- Many different techniques •
- Some more expensive than others

Water Quantity Irrigation water use is <u>NOT</u> the same as plant water use (ET) • ET = P + Ir - If - R

Irrigation scheduling: Plant Water Use

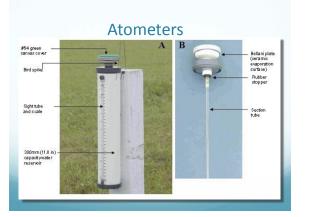
Potential evapotranspiration (PET)

Affected by air temperature, sunlight, wind, humidity, available water in the soil


Effective Rainfall

- Measurement of rain is as important as the measurement of ET
- Rainfall replenishes soil moisture
- Rainfall that runs off is NOT effective rain
 Soil percolation rate and slope limit effective rain.
- Rain that soaks below the roots is NOT effective rain

Rain shut off sensors



Irrigation scheduling: Measuring ET

Irrigation can be based on ETp calculated from weather stations measuring

Determine irrigation quantity accurately

Weather stations that determine ET: • Caution: predictive ET ≠ Actual ET

- Many models: Pan, McCloud, Penman, Jensen and Haies
- Models assume:
- non-stressed conditions,
 no limiting factors, and
- uniform canopy

Does it make sense to apply that much water at once?

• Hint: soil texture!

If you can, better to integrate soil moisture!

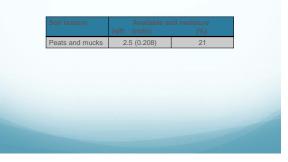
Where do plant get their water?

Soil root zone- where there is available water!

Example: Sands

- Holds 1.5" water per ft of soil
- Half is available (0.75")

Irrigation based on soil moisture

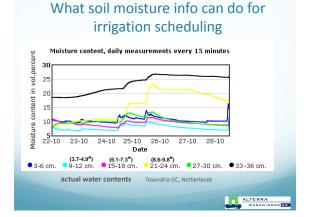

Know the available soil moisture of your root zone soil!

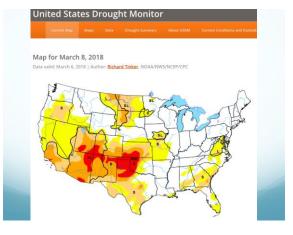
Soil texture	Available so in/ft (m/m)	oil moisture (%)
Sand	0.7 (0.058)	6
Loamy Sand	1.1 (0.092)	9
Sandy Loam	1.4 (0.117)	12
Loam	1.8 (0.150)	15
Silt Loam	1.8 (0.150)	15
Sandy Clay Loam	1.3 (0.108)	16
Sandy Clay	1.6 (0.133)	14
Clay Loam	1.7 (0.142)	11
Silty Clay Loam	1.9 (0.158)	13
Silty Clay	2.4 (0.200)	20
Clay	2.2 (0.183)	18

Does not account for organic matter.

Irrigation based on soil moisture

Organic Soils




Benefit of soil moisture sensor

Different soils = different water holding capacities

When to Irrigate? Best time is in morning before plants get to work! • • Dependent on system type 40.0 4000 Turf Sensor -UF 05.09-05.15.05 3500 õ 2000 edura 20. 1500 Lighti 1000 10 (Tim - Air temperature -Light intensity

Drought Informational Websites:

- SC Climate, Energy and Commerce Advisory Committee <u>www.scclimatechange.us/</u>
- SC Drought Response Council www.dnr.sc.gov/climate/sco/Drought/drought_current_info. php
- Clemson drought update http://hgic.clemson.edu/hottopics/details/drought.htm

Water Delivery Systems

- Many different
 - Types
 - Scale
- Keep it production system relevant
 - Hoop house
 - Large / small scale
 - Greenhouse
 - Pasture
 - Row crop Nursery

Water Delivery Systems

Overhead: Large scale / mobile

- Center pivot
- Traveling gun
- Lateral
- Can incorporate variable rate (VRI)

Water Delivery Systems

Overhead: Large scale / stationary

Can incorporate variable rate (VRI)

Water Delivery Systems

Overhead: small -med scale / mobile

Can incorporate variable rate (VRI)

Water Delivery Systems

Flooding: Greenhouse / Hoop house / Field

Water Delivery Systems

Micro Drip / Mist

Water Delivery Systems

Subsurface Drip Irrigation (SDI)

 Application of water and chemicals directly to the root zone

SDI Applications

- Around trees
- Raised beds
- Medians
- Nurseries
- Greenhouses
- Turf (residential, sports)
- Vineyards
- Roof top gardens
- Wall gardens

SDI Advantages

- Reduction in water use:
 - Evaporation from surfaces
 - Wind drift
 - · Not irrigating full soil profile
- Potential water quality protection of receiving waters
 - · Less runoff
 - · Less deep percolation

SDI Advantages Cont'd

- · Reduced surface problems:
 - No infiltration problems
 - No crust formation
 - Less salt accumulation at surface
 - · Less optimal conditions for disease
- · Can irrigate any time:
 - Weather
 - While harvesting
- For slopes

Water Delivery Systems

Subsurface Drip Irrigation (SDI)

For both large and small scale!

Table 1. Cotton production with SDI compared to dry land during three years in South Carolina (cotton price = \$ 0.80/lb).

Year	Yield Increase	Income Increase
1997	370 lb/ac (37%)	\$296/ac
1998	534 lb/ac (56%)	\$427/ac
1999	577 lb/ac (103%)	\$462/ac
Average	494 lb/ac (65%)	\$395/ac

From: AC-07 Comparison of Irrigated and Dryland Crop Productionin Sc. Jose Payerno & Ahmad Khalilian

SDI Disadvantages

- · Can be costly
- System problems:
 - · Digging required
 - Fewer visual indicators of system operational performance
 - Surfacing or tunneling of the emitter flow to the soil surface (chimney effect)
 - · Rodent problems more difficult to solve

SDI Disadvantages Cont'd

- System development:
 - Less technological advances than other irrigation systems
 - · Less # of turn-key operations
 - · What about afterwards?
- · Misc:
 - Dripline spacing
 - Salinity may be increased above dripline
 - Soil surface disruption is limited

Clogging of dripline emitters is the primary reason for SDI system failure.

SDI Basic System Overview Installing laterals

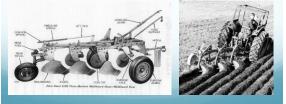
Irrigation Information Resources

- IA: Irrigation Association
- Clemson University Extension
- CIMIS: CA Irrigation Management Information System
- USDA-NRCS

New CIG Demonstration: Influence of Soil Sampling on Fertility Recommendations and Crop Yields

Partners:

- Clemson University
- Dillon Soil & Water Conservation District
- 2.5 yr project
- Coleman Farm, Dillon SC
- Began in October '16 with wheat crop


New CIG Demonstration: GOAL

- A side-by-side demonstration of
- · cover and cash crop response,
- · and economic return

of fertility recommendations based off of different soil sampling depth strategies for a field that has been implementing soil health principles.

New CIG Demonstration: INTRO

- · Current soil sampling strategies are based off of use of out dated plowing techniques.
- Moldboard plows:
- clay: 4" deep
- Sand: 6 3/4" deep

New CIG Demonstration: INTRO

- SC soil composition changes with depth
 - Texture ٠
 - Water content •
 - Nutrient retention

New CIG Demonstration: DEMONSTRATION DESIGN

Five Sampling Strategies:

- A. 0-6"
- B. 0-12"
- C. 0-24"
- D. Full depth to impeding layer /abrupt texture change
- E. Clay horizon to 24" from surface.

